Second-Life Electric Vehicle Batteries for Home Photovoltaic Systems: Transforming Energy Storage and Sustainability

Author:

Sarker Md. Tanjil1ORCID,Haram Mohammed Hussein Saleh Mohammed1ORCID,Shern Siow Jat1ORCID,Ramasamy Gobbi1,Al Farid Fahmid2ORCID

Affiliation:

1. Centre for Electric Energy and Automation, Faculty of Engineering, Multimedia University, Cyberjaya 63100, Malaysia

2. Centre for Digital Home, Faculty of Engineering, Multimedia University, Cyberjaya 63100, Malaysia

Abstract

Solar-based home PV systems are the most amazing eco-friendly energy innovations in the world, which are not only climate-friendly but also cost-effective solutions. The tropical environment of Malaysia makes it difficult to adopt photovoltaic (PV) systems because of the protracted rainy monsoon season, which makes PV systems useless without backup batteries. Large quantities of lithium-ion battery (LIB) trash are being produced by the electric vehicle (EV) sector. A total of 75% of the highest capacity levels have been discarded. By 2035, it is predicted that the wasted LIBs held as a result of expensive recycling and difficult material separation would carry up to 1200 GWh. An economical and sustainable option is offered by our study, which prototypes a replicated LIB pack that is incorporated into a PV home system. This study investigates the transformational power of second-life electric vehicle batteries (SLEVBs) when incorporated into home photovoltaic (PV) systems. The concept entails reusing existing electric vehicle batteries for stationary applications, offering a unique approach to extending the life of these batteries while meeting the growing need for sustainable domestic energy storage. The study looks at the technological feasibility, economic viability, and environmental effect of introducing SLEVBs into household PV systems, giving vital insight into their role in revolutionizing energy storage techniques and promoting sustainability. In comparison to the Lead–Acid Battery (LAB) system, the SLEVB system has a cheaper total cost of ownership, with savings of 12.62% compared with new LABs. A CO2 emission reduction of at least 20% is achieved by using the SLEVB system compared with LABs. Electricity can be provided in houses in rural areas where there is no electricity. As a result, the security and superiority of the life of rural residents will improve. It is anticipated that the suggested strategy will lower EV pricing, enabling EV adoption for M40 and B40 groups. Consequently, the Malaysian and worldwide EV business will remain viable.

Funder

Multimedia University

Publisher

MDPI AG

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3