Applying Multi-Metric Deformable Image Registration for Dose Accumulation in Combined Cervical Cancer Radiotherapy

Author:

Fu Qi1,Xie Xin12,Xu Yingjie1,Zuo Jing1,Yang Xi1ORCID,Xia Wenlong1,An Jusheng1,Huang Manni1,Yan Hui1,Dai Jianrong1

Affiliation:

1. Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medial Sciences and Peking Union Medical College, Beijing 100021, China

2. Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China

Abstract

(1) Purpose: Challenges remain in dose accumulation for cervical cancer radiotherapy combined with external beam radiotherapy (EBRT) and brachytherapy (BT) as there are many large and complex organ deformations between different treatments. This study aims to improve deformable image registration (DIR) accuracy with the introduction of multi-metric objectives for dose accumulation of EBRT and BT. (2) Materials and methods: Twenty cervical cancer patients treated with EBRT (45–50 Gy/25 fractions) and high-dose-rate BT (≥20 Gy in 4 fractions) were included for DIR. The multi-metric DIR algorithm included an intensity-based metric, three contour-based metrics, and a penalty term. Nonrigid B-spine transformation was used to transform the planning CT images from EBRT to the first BT, with a six-level resolution registration strategy. To evaluate its performance, the multi-metric DIR was compared with a hybrid DIR provided by commercial software. The DIR accuracy was measured by the Dice similarity coefficient (DSC) and Hausdorff distance (HD) between deformed and reference organ contours. The accumulated maximum dose of 2 cc (D2cc) of the bladder and rectum was calculated and compared to simply addition of D2cc from EBRT and BT (ΔD2cc). (3) Results: The mean DSC of all organ contours for the multi-metric DIR were significantly higher than those for the hybrid DIR (p ≤ 0.011). In total, 70% of patients had DSC > 0.8 using the multi-metric DIR, while 15% of patients had DSC > 0.8 using the commercial hybrid DIR. The mean ΔD2cc of the bladder and rectum for the multi-metric DIR were 3.25 ± 2.29 and 3.54 ± 2.02 GyEQD2, respectively, whereas those for the hybrid DIR were 2.68 ± 2.56 and 2.32 ± 3.25 GyEQD2, respectively. The multi-metric DIR resulted in a much lower proportion of unrealistic D2cc than the hybrid DIR (2.5% vs. 17.5%). (4) Conclusions: Compared with the commercial hybrid DIR, the introduced multi-metric DIR significantly improved the registration accuracy and resulted in a more reasonable accumulated dose distribution.

Funder

Beijing Hope Run Special Fund of Cancer Foundation of China

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3