Improving hybrid image and structure-based deformable image registration for large internal deformations

Author:

Lorenzo Polo A,Nix MORCID,Thompson C,O’Hara C,Entwisle J,Murray L,Appelt AORCID,Weistrand O,Svensson S

Abstract

Abstract Objective. Deformable image registration (DIR) is a widely used technique in radiotherapy. Complex deformations, resulting from large anatomical changes, are a regular challenge. DIR algorithms generally seek a balance between capturing large deformations and preserving a smooth deformation vector field (DVF). We propose a novel structure-based term that can enhance the registration efficacy while ensuring a smooth DVF. Approach. The proposed novel similarity metric for controlling structures was introduced as a new term into a commercially available algorithm. Its performance was compared to the original algorithm using a dataset of 46 patients who received pelvic re-irradiation, many of which exhibited complex deformations. Main results. The mean Dice Similarity Coefficient (DSC) under the improved algorithm was 0.96, 0.94, 0.76, and 0.91 for bladder, rectum, colon, and bone respectively, compared to 0.69, 0.89, 0.62, and 0.88 for the original algorithm. The improvement was more pronounced for complex deformations. Significance. With this work, we have demonstrated that the proposed term is able to improve registration accuracy for complex cases while maintaining realistic deformations.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3