Deep SE-BiLSTM with IFPOA Fine-Tuning for Human Activity Recognition Using Mobile and Wearable Sensors

Author:

Jameer Shaik1,Syed Hussain1

Affiliation:

1. School of Computer Science and Engineering, VIT AP University, Amaravati 522237, India

Abstract

Pervasive computing, human–computer interaction, human behavior analysis, and human activity recognition (HAR) fields have grown significantly. Deep learning (DL)-based techniques have recently been effectively used to predict various human actions using time series data from wearable sensors and mobile devices. The management of time series data remains difficult for DL-based techniques, despite their excellent performance in activity detection. Time series data still has several problems, such as difficulties in heavily biased data and feature extraction. For HAR, an ensemble of Deep SqueezeNet (SE) and bidirectional long short-term memory (BiLSTM) with improved flower pollination optimization algorithm (IFPOA) is designed to construct a reliable classification model utilizing wearable sensor data in this research. The significant features are extracted automatically from the raw sensor data by multi-branch SE-BiLSTM. The model can learn both short-term dependencies and long-term features in sequential data due to SqueezeNet and BiLSTM. The different temporal local dependencies are captured effectively by the proposed model, enhancing the feature extraction process. The hyperparameters of the BiLSTM network are optimized by the IFPOA. The model performance is analyzed using three benchmark datasets: MHEALTH, KU-HAR, and PAMPA2. The proposed model has achieved 99.98%, 99.76%, and 99.54% accuracies on MHEALTH, KU-HAR, and PAMPA2 datasets, respectively. The proposed model performs better than other approaches from the obtained experimental results. The suggested model delivers competitive results compared to state-of-the-art techniques, according to experimental results on four publicly accessible datasets.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3