Deep Wavelet Convolutional Neural Networks for Multimodal Human Activity Recognition Using Wearable Inertial Sensors

Author:

Vuong Thi Hong1ORCID,Doan Tung2ORCID,Takasu Atsuhiro1ORCID

Affiliation:

1. Department of Informatics, National Institute of Informatics, Tokyo 101-0003, Japan

2. Department of Computer Engineering, School of Information and Communication Technology, Hanoi University of Science and Technology, Hanoi 11615, Vietnam

Abstract

Recent advances in wearable systems have made inertial sensors, such as accelerometers and gyroscopes, compact, lightweight, multimodal, low-cost, and highly accurate. Wearable inertial sensor-based multimodal human activity recognition (HAR) methods utilize the rich sensing data from embedded multimodal sensors to infer human activities. However, existing HAR approaches either rely on domain knowledge or fail to address the time-frequency dependencies of multimodal sensor signals. In this paper, we propose a novel method called deep wavelet convolutional neural networks (DWCNN) designed to learn features from the time-frequency domain and improve accuracy for multimodal HAR. DWCNN introduces a framework that combines continuous wavelet transforms (CWT) with enhanced deep convolutional neural networks (DCNN) to capture the dependencies of sensing signals in the time-frequency domain, thereby enhancing the feature representation ability for multiple wearable inertial sensor-based HAR tasks. Within the CWT, we further propose an algorithm to estimate the wavelet scale parameter. This helps enhance the performance of CWT when computing the time-frequency representation of the input signals. The output of the CWT then serves as input for the proposed DCNN, which consists of residual blocks for extracting features from different modalities and attention blocks for fusing these features of multimodal signals. We conducted extensive experiments on five benchmark HAR datasets: WISDM, UCI-HAR, Heterogeneous, PAMAP2, and UniMiB SHAR. The experimental results demonstrate the superior performance of the proposed model over existing competitors.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3