Spatio-Temporal Evolution of Glacial Lakes in the Tibetan Plateau over the Past 30 Years

Author:

Dou XiangyangORCID,Fan Xuanmei,Wang XinORCID,Yunus Ali P.,Xiong Junlin,Tang Ran,Lovati Marco,van Westen CeesORCID,Xu QiangORCID

Abstract

As the Third Pole of the Earth and the Water Tower of Asia, the Tibetan Plateau (TP) nurtures large numbers of glacial lakes, which are sensitive to global climate change. These lakes modulate the freshwater ecosystem in the region but concurrently pose severe threats to the valley population by means of sudden glacial lake outbursts and consequent floods (GLOFs). The lack of high-resolution multi-temporal inventory of glacial lakes in TP hampers a better understanding and prediction of the future trend and risk of glacial lakes. Here, we created a multi-temporal inventory of glacial lakes in TP using a 30-year record of 42,833 satellite images (1990–2019), and we discussed their characteristics and spatio-temporal evolution over the years. Results showed that their number and area had increased by 3285 and 258.82 km2 in the last 3 decades, respectively. We noticed that different regions of the TP exhibited varying change rates in glacial lake size; most regions show a trend of expansion and increase in glacial lakes, while some regions show a trend of decreasing such as the western Pamir and the eastern Hindu Kush. The mapping uncertainty is about 17.5%, which is lower than other available datasets, thus making our inventory reliable for the spatio-temporal evolution analysis of glacial lakes in the TP. Our lake inventory data are publicly published, it can help to study climate change–glacier–glacial lake–GLOF interactions in the Third Pole and serve as input to various hydro-climatic studies.

Funder

National Science Fund for Distinguished Young Scholars of China

Natural Science Foundation of Sichuan Province

Fund of SKLGP

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3