Stable-Isotope-Aided Investigation of the Effect of Redox Potential on Nitrous Oxide Emissions as Affected by Water Status and N Fertilization

Author:

Wang JihuanORCID,Bogena Heye R.ORCID,Vereecken HarryORCID,Brüggemann Nicolas

Abstract

Soils are the dominant source of atmospheric nitrous oxide (N2O), especially agricultural soils that experience both waterlogging and intensive nitrogen fertilization. However, soil heterogeneity and the irregular occurrence of hydrological events hamper the prediction of the temporal and spatial dynamics of N2O production and transport in soils. Because soil moisture influences soil redox potential, and as soil N cycling processes are redox-sensitive, redox potential measurements could help us to better understand and predict soil N cycling and N2O emissions. Despite its importance, only a few studies have investigated the control of redox potential on N2Oemission from soils in detail. This study aimed to partition the different microbial processes involved in N2O production (nitrification and denitrification) by using redox measurements combined with isotope analysis at natural abundance and 15N-enriched. To this end, we performed long-term laboratory lysimeter experiments to mimic common agricultural irrigation and fertilization procedures. In addition, we used isotope analysis to characterize the distribution and partitioning of N2O sources and explored the 15N-N2O site preference to further constrain N2O microbial processes. We found that irrigation, saturation, and drainage induced changes in soil redox potential, which were closely related to changes in N2O emission from the soil as well as to changes in the vertical concentration profiles of dissolved N2O, nitrate (NO3−) and ammonium (NH4+). The results showed that the redox potential could be used as an indicator for NH4+, NO3−, and N2O production and consumption processes along the soil profile. For example, after a longer saturation period of unfertilized soil, the NO3− concentration was linearly correlated with the average redox values at the different depths (R2 = 0.81). During the transition from saturation to drainage, but before fertilization, the soil showed an increase in N2O emissions, which originated mainly from nitrification as indicated by the isotopic signatures of N2O (δ15N bulk, δ18O and 15N-N2O site preference). After fertilization, N2O still mainly originated from nitrification at the beginning, also indicated by high redox potential and the increase of dissolved NO3−. Denitrification mainly occurred during the last saturation period, deduced from the simultaneous 15N isotope analysis of NO3− and N2O. Our findings suggest that redox potential measurements provide suitable information for improving the prediction of soil N2O emissions and the distribution of mineral N species along the soil profile under different hydrological and fertilization regimes.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference65 articles.

1. The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,2007

2. Soil Carbon Dynamics: An Integrated Methodology;Kutsch,2009

3. Carbon and Nitrogen in the Terrestrial Environment;Nieder,2008

4. Greenhouse gas emissions from European soils under different land use: effects of soil moisture and temperature

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3