Ratoon Rice Cropping Mitigates the Greenhouse Effect by Reducing CH4 Emissions through Reduction of Biomass during the Ratoon Season

Author:

Ren Xiaojian1,Cui Kehui1,Deng Zhiming1,Han Kaiyan1,Peng Yuxuan1,Zhou Jiyong2,Zhai Zhongbing2,Huang Jianliang1,Peng Shaobing1

Affiliation:

1. National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Corp Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, College of Plant Science and Technology of Huazhong Agricultural University, Wuhan 430070, China

2. Wuxue Agro-Technology Extension Service Center, Wuxue 435499, China

Abstract

The ratoon rice cropping system (RR) is developing rapidly in China due to its comparable annual yield and lower agricultural and labor inputs than the double rice cropping system (DR). Here, to further compare the greenhouse effects of RR and DR, a two-year field experiment was carried out in Hubei Province, central China. The ratoon season showed significantly lower cumulative CH4 emissions than the main season of RR, the early season and late season of DR. RR led to significantly lower annual cumulative CH4 emissions, but no significant difference in cumulative annual N2O emissions compared with DR. In RR, the main and ratoon seasons had significantly higher and lower grain yields than the early and late seasons of DR, respectively, resulting in comparable annual grain yields between the two systems. In addition, the ratoon season had significantly lower global warming potential (GWP) and greenhouse gas intensity-based grain yield (GHGI) than the main and late seasons. The annual GWP and GHGI of RR were significantly lower than those of DR. In general, the differences in annual CH4 emissions, GWP, and GHGI could be primarily attributed to the differences between the ratoon season and the late season. Moreover, GWP and GHGI exhibited significant positive correlations with cumulative emissions of CH4 rather than N2O. The leaf area index (LAI) and biomass accumulation in the ratoon season were significantly lower than those in the main season and late season, and CH4 emissions, GWP, and GHGI showed significant positive correlations with LAI, biomass accumulation and grain yield in the ratoon and late season. Finally, RR had significantly higher net ecosystem economic benefits (NEEB) than DR. Overall, this study indicates that RR is a green cropping system with lower annual CH4 emissions, GWP, and GHGI as well as higher NEEB.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3