Abstract
This paper developed a three-dimensional model to simulate the process of atomization and liquid film formation during the air-blast spray cooling technological process. The model was solved using the discrete phase model method. Several factors including the thermodynamic characteristics of the liquid film as well as the spray quality with different spray mass flow rates under different spray heights were numerically investigated and discussed. The results show that the varied spray height has little effect on the Sauter Mean Diameter (d32) of the spray droplet, while the thermodynamic characteristics of liquid film including the liquid film height, the liquid film velocity, and the liquid film generation rate are sensitive to the change of the spray height. With the growth of spray mass flow rates, d32, the liquid film generation rate and liquid film height become larger, while the liquid film velocity with different spray mass flow rates has a similar velocity distribution, indicating that the spray mass flow rate has little effect on the liquid film velocity. The average d32 of droplet size shows a sharp drop when sprayed from the nozzle in a short period of time (<1.5 ms), then approaching smoothness, below a value of 40 μ m , the spray status tends to be stable.
Subject
General Physics and Astronomy
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献