Comparative Study on Enhanced Photocatalytic Activity of Visible Light-Active Nanostructures for Degradation of Oxytetracycline and COD Removal of Licorice Extraction Plant Wastewater

Author:

Zangeneh Hadis,Mousavi Seyyed Alireza,Eskandari Parisa,Amarloo Ehsan,Farghelitiyan Javad,Zamani Mohammad Reza

Abstract

This study evaluates the effects of carbon, nitrogen, and sulfur dopants on the photocatalytic activity of TiO2 for degradation of oxytetracycline (OTC) and chemical oxygen demand (COD) removal from licorice extraction plant wastewater (LEPW). Three novel visible-light-responsive nanostructures, including L-Histidine-TiO2, L-Methionine-TiO2 and L-Asparagine-TiO2, were successfully synthesized. The results showed that the modification of TiO2 with these three amino acids made the catalyst active in the visible light region and reduced the recombination rate of e−/h+ pairs according to PL analysis. The photodegradation efficiency of L-Histidine (2 wt.%)-TiO2 was 100% and 94% for OTC and COD, respectively. It showed the highest photocatalytic activity under illumination, compared to L-Methionine (1.5 wt.%)-TiO2 and L-Asparagine (2 wt.%)-TiO2. Synthesized composites were characterized with SEM, XRD, FTIR, DRS, and PL analyses. The biological oxygen demand to COD (BOD5/COD) ratio for treated LEPW was determined to be 0.5–0.6, confirming the enhanced biodegradability of the treated effluent. The effect of the independent variables, namely, initial concentration of OTC and COD, catalyst dosage, irradiation time, pH of solution, and light intensity, on the photocatalytic process was evaluated by Response Surface Methodology (RSM), and the optimum value of each independent parameter for maximum degradation of OTC and COD by L-Histidine (2 wt.%)-TiO2 was determined. The radical trapping experiment was performed with various scavengers in order to propose a photocatalytic mechanism, showing that hydroxyl radicals were the main active species. L-Histidine (2 wt.%)-TiO2 showed a stable and reusable structure even after four cycles of COD removal under the following optimal conditions of [COD]: 300 mg/L, [catalyst]: 1 g/L, light intensity: 25 W/cm2 at pH = 4 after 180 min irradiation.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3