Probing into the In-Situ Exsolution Mechanism of Metal Nanoparticles from Doped Ceria Host

Author:

Zhang Lifang,Ji Weiwei,Guo Qiyang,Cheng Yu,Liu Xiaojuan,Lu Hongbin,Dai HongORCID

Abstract

Exsolved nanoparticle catalysts have recently attracted broad research interest as they simultaneously combine the features of catalytic activity and chemical stability in various applications of energy conversion and storage. As the internal mechanism of in-situ exsolution is of prime significance for the optimization of its strategy, comprehensive research focused on the behaviors of in-situ segregation for metal (Mn, Fe, Co, Ni, Cu, Ag, Pt and Au)-substituted CeO2 is reported using first-principles calculations. An interesting link between the behaviors of metal growth from the ceria host and their microelectronic reconfigurations was established to understand the inherent attribute of metal self-regeneration, where a stair-stepping charge difference served as the inner driving force existing along the exsolving pathway, and the weak metal-coordinate associations synergistically facilitate the ceria’s in-situ growth. We hope that these new insights provide a microscopic insight into the physics of in-situ exsolution to gain a guideline for the design of nanoparticle socketed catalysts from bottom to top.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3