Review of ZnO Binary and Ternary Composite Anodes for Lithium-Ion Batteries

Author:

Bui Vu Khac HoangORCID,Pham Tuyet Nhung,Hur JaehyunORCID,Lee Young-ChulORCID

Abstract

To enhance the performance of lithium-ion batteries, zinc oxide (ZnO) has generated interest as an anode candidate owing to its high theoretical capacity. However, because of its limitations such as its slow chemical reaction kinetics, intense capacity fading on potential cycling, and low rate capability, composite anodes of ZnO and other materials are manufactured. In this study, we introduce binary and ternary composites of ZnO with other metal oxides (MOs) and carbon-based materials. Most ZnO-based composite anodes exhibit a higher specific capacity, rate performance, and cycling stability than a single ZnO anode. The synergistic effects between ZnO and the other MOs or carbon-based materials can explain the superior electrochemical characteristics of these ZnO-based composites. This review also discusses some of their current limitations.

Funder

Ministry of Land, Infrastructure and Transport

the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3