Nano-Enable Materials Promoting Sustainability and Resilience in Modern Agriculture

Author:

Ur Rahim HafeezORCID,Qaswar MuhammadORCID,Uddin Misbah,Giannini CinziaORCID,Herrera Maria LidiaORCID,Rea GiuseppinaORCID

Abstract

Intensive conventional agriculture and climate change have induced severe ecological damages and threatened global food security, claiming a reorientation of agricultural management and public policies towards a more sustainable development model. In this context, nanomaterials promise to support this transition by promoting mitigation, enhancing productivity, and reducing contamination. This review gathers recent research innovations on smart nanoformulations and delivery systems improving crop protection and plant nutrition, nanoremediation strategies for contaminated soils, nanosensors for plant health and food quality and safety monitoring, and nanomaterials as smart food-packaging. It also highlights the impact of engineered nanomaterials on soil microbial communities, and potential environmental risks, along with future research directions. Although large-scale production and in-field testing of nano-agrochemicals are still ongoing, the collected information indicates improvements in uptake, use efficiency, targeted delivery of the active ingredients, and reduction of leaching and pollution. Nanoremediation seems to have a low negative impact on microbial communities while promoting biodiversity. Nanosensors enable high-resolution crop monitoring and sustainable management of the resources, while nano-packaging confers catalytic, antimicrobial, and barrier properties, preserving food safety and preventing food waste. Though, the application of nanomaterials to the agri-food sector requires a specific risk assessment supporting proper regulations and public acceptance.

Funder

Regione Lazio

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference168 articles.

1. 1.6 Chapter Resources;Fisher;Environ. Biol.,2017

2. The State of Food Security and Nutrition in the World 2018: Building Climate Resilience for Food security and Nutrition,2019

3. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum

4. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems

5. The State of Food Security and Nutrition in the World 2019: Safeguarding against Economic Slowdowns and Downturns,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3