Color Recurrence Plots for Bearing Fault Diagnosis

Author:

Petrauskiene Vilma,Pal MayurORCID,Cao MaosenORCID,Wang Jie,Ragulskis MinvydasORCID

Abstract

This paper presents bearing fault diagnosis using the image classification of different fault patterns. Feature extraction for image classification is carried out using a novel approach of Color recurrence plots, which is presented for the first time. Color recurrence plots are created using non-linear embedding of the vibration signals into delay coordinate space with variable time lags. Deep learning-based image classification is then performed by building the database of the extracted features of the bearing vibration signals in the form of Color recurrence plots. A Series of computational experiments are performed to compare the accuracy of bearing fault classification using Color recurrence plots. The standard bearing vibration dataset of Case Western Reserve University is used for those purposes. The paper demonstrates the efficacy and the accuracy of a new and unique approach of scalar time series extraction into two-dimensional Color recurrence plots for bearing fault diagnosis.

Funder

Key RD Project of Anhui Science and Technology Department

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3