Improved deep-learning rotor fault diagnosis based on multi vibration sensors and recurrence plots

Author:

Tarek Aroui12ORCID,Sameh Marmouch12

Affiliation:

1. Université de Sousse, Ecole Nationale d’Ingénieurs de Sousse, Sousse, Tunisia

2. Université de Sfax, Ecole Nationale d’ingénieurs de Sfax, Laboratoire des Sciences et Techniques de l’Automatiques et de l’informatique industrielle, Sfax, Tunisia

Abstract

Deep learning techniques are increasingly applied to time series data, offering promising results in various fields. Deep learning techniques can handle data from multiple sensors to detect anomalies in an industrial environment. This paper proposes a new method of anomaly detection based on a multilayer image representation of different vibration sensors’ recurrence plots. Each sensor’s recurrence plot forms a layer. The performance and reliability of our method were assessed using an experimental database collected under different load conditions and with different types of rotor anomalies. Experiment results demonstrate the effectiveness of GoogLeNet using individual and multi-layered recurrence plots to find rotor faults in an induction motors.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3