Genome Mining as an Alternative Way for Screening the Marine Organisms for Their Potential to Produce UV-Absorbing Mycosporine-like Amino Acid

Author:

Rosic NedeljkaORCID

Abstract

Mycosporine-like amino acids (MAAs) are small molecules with robust ultraviolet (UV)-absorbing capacities and a huge potential to be used as an environmentally friendly natural sunscreen. MAAs, temperature, and light-stable compounds demonstrate powerful photoprotective capacities and the ability to capture light in the UV-A and UV-B ranges without the production of damaging free radicals. The biotechnological uses of these secondary metabolites have been often limited by the small quantities restored from natural resources, variation in MAA expression profiles, and limited success in heterologous expression systems. Overcoming these obstacles requires a better understanding of MAA biosynthesis and its regulatory processes. MAAs are produced to a certain extent via a four-enzyme pathway, including genes encoding enzymes dehydroquinate synthase, enzyme O-methyltransferase, adenosine triphosphate grasp, and a nonribosomal peptide synthetase. However, there are substantial genetic discrepancies in the MAA genetic pathway in different species, suggesting further complexity of this pathway that is yet to be fully explored. In recent years, the application of genome-mining approaches allowed the identification of biosynthetic gene clusters (BGCs) that resulted in the discovery of many new compounds from unconventional sources. This review explores the use of novel genomics tools for linking BGCs and secondary metabolites based on the available omics data, including MAAs, and evaluates the potential of using novel genome-mining tools to reveal a cryptic potential for new bioproduct screening approaches and unrevealing new MAA producers.

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3