Biotechnological Potential of Macroalgae during Seasonal Blooms for Sustainable Production of UV-Absorbing Compounds

Author:

Rosic Nedeljka12ORCID,Thornber Carol3ORCID

Affiliation:

1. Faculty of Health, Southern Cross University, Gold Coast, QLD 4225, Australia

2. Marine Ecology Research Centre, Southern Cross University, Lismore, NSW 2480, Australia

3. Department of Natural Resources Science, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA

Abstract

Marine macroalgae (seaweeds) are important primary global producers, with a wide distribution in oceans around the world from polar to tropical regions. Most of these species are exposed to variable environmental conditions, such as abiotic (e.g., light irradiance, temperature variations, nutrient availability, salinity levels) and biotic factors (e.g., grazing and pathogen exposure). As a result, macroalgae developed numerous important strategies to increase their adaptability, including synthesizing secondary metabolites, which have promising biotechnological applications, such as UV-absorbing Mycosporine-Like Amino Acid (MAAs). MAAs are small, water-soluble, UV-absorbing compounds that are commonly found in many marine organisms and are characterized by promising antioxidative, anti-inflammatory and photoprotective properties. However, the widespread use of MAAs by humans is often restricted by their limited bioavailability, limited success in heterologous expression systems, and low quantities recovered from the natural environment. In contrast, bloom-forming macroalgal species from all three major macroalgal clades (Chlorophyta, Phaeophyceae, and Rhodophyta) occasionally form algal blooms, resulting in a rapid increase in algal abundance and high biomass production. This review focuses on the bloom-forming species capable of producing pharmacologically important compounds, including MAAs, and the application of proteomics in facilitating macroalgal use in overcoming current environmental and biotechnological challenges.

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3