Trust and Trade-Offs in Sharing Data for Precision Medicine: A National Survey of Singapore

Author:

Lysaght Tamra,Ballantyne Angela,Toh Hui Jin,Lau Andrew,Ong Serene,Schaefer Owen,Shiraishi Makoto,van den Boom WillemORCID,Xafis Vicki,Tai E Shyong

Abstract

Background: Precision medicine (PM) programs typically use broad consent. This approach requires maintenance of the social license and public trust. The ultimate success of PM programs will thus likely be contingent upon understanding public expectations about data sharing and establishing appropriate governance structures. There is a lack of data on public attitudes towards PM in Asia. Methods: The aim of the research was to measure the priorities and preferences of Singaporeans for sharing health-related data for PM. We used adaptive choice-based conjoint analysis (ACBC) with four attributes: uses, users, data sensitivity and consent. We recruited a representative sample of n = 1000 respondents for an in-person household survey. Results: Of the 1000 respondents, 52% were female and majority were in the age range of 40–59 years (40%), followed by 21–39 years (33%) and 60 years and above (27%). A total of 64% were generally willing to share de-identified health data for IRB-approved research without re-consent for each study. Government agencies and public institutions were the most trusted users of data. The importance of the four attributes on respondents’ willingness to share data were: users (39.5%), uses (28.5%), data sensitivity (19.5%), consent (12.6%). Most respondents found it acceptable for government agencies and hospitals to use de-identified data for health research with broad consent. Our sample was consistent with official government data on the target population with 52% being female and majority in the age range of 40–59 years (40%), followed by 21–39 years (33%) and 60 years and above (27%). Conclusions: While a significant body of prior research focuses on preferences for consent, our conjoint analysis found consent was the least important attribute for sharing data. Our findings suggest the social license for PM data sharing in Singapore currently supports linking health and genomic data, sharing with public institutions for health research and quality improvement; but does not support sharing with private health insurers or for private commercial use.

Funder

Ministry of Education - Singapore

National Research Foundation Singapore

Ministry of Health -Singapore

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3