Recurrent Residual Deformable Conv Unit and Multi-Head with Channel Self-Attention Based on U-Net for Building Extraction from Remote Sensing Images

Author:

Yu Wenling12,Liu Bo123ORCID,Liu Hua123,Gou Guohua4ORCID

Affiliation:

1. School of Surveying and Geoinformation Engineering, East China University of Technology, Nanchang 330013, China

2. Key Laboratory of Mine Environmental Monitoring and Improving around Poyang Lake of Ministry of Natural Resources, East China University of Technology, Nanchang 330013, China

3. Jiangxi Province Engineering Research Center of Surveying, Mapping and Geographic Information, Nanchang 330025, China

4. State Key Laboratory Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430070, China

Abstract

Considering the challenges associated with accurately identifying building shape features and distinguishing between building and non-building features during the extraction of buildings from remote sensing images using deep learning, we propose a novel method for building extraction based on U-Net, incorporating a recurrent residual deformable convolution unit (RDCU) module and augmented multi-head self-attention (AMSA). By replacing conventional convolution modules with an RDCU, which adopts a deformable convolutional neural network within a residual network structure, the proposed method enhances the module’s capacity to learn intricate details such as building shapes. Furthermore, AMSA is introduced into the skip connection function to enhance feature expression and positions through content–position enhancement operations and content–content enhancement operations. Moreover, AMSA integrates an additional fusion channel attention mechanism to aid in identifying cross-channel feature expression Intersection over Union (IoU) score differences. For the Massachusetts dataset, the proposed method achieves an Intersection over Union (IoU) score of 89.99%, PA (Pixel Accuracy) score of 93.62%, and Recall score of 89.22%. For the WHU Satellite dataset I, the proposed method achieves an IoU score of 86.47%, PA score of 92.45%, and Recall score of 91.62%, For the INRIA dataset, the proposed method achieves an IoU score of 80.47%, PA score of 90.15%, and Recall score of 85.42%.

Funder

National Natural Science Foundation of China

Jiangxi Provincial Natural Science Foundation

Graduate Innovation Foundation of East China University of Technology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3