HFCC-Net: A Dual-Branch Hybrid Framework of CNN and CapsNet for Land-Use Scene Classification

Author:

Guo Ningbo1ORCID,Jiang Mingyong1,Gao Lijing2,Li Kaitao1ORCID,Zheng Fengjie1,Chen Xiangning1,Wang Mingdong1

Affiliation:

1. Space Information Academic, Space Engineering University, Beijing 101407, China

2. State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China

Abstract

Land-use scene classification (LUSC) is a key technique in the field of remote sensing imagery (RSI) interpretation. A convolutional neural network (CNN) is widely used for its ability to autonomously and efficiently extract deep semantic feature maps (DSFMs) from large-scale RSI data. However, CNNs cannot accurately extract the rich spatial structure information of RSI, and the key information of RSI is easily lost due to many pooling layers, so it is difficult to ensure the information integrity of the spatial structure feature maps (SSFMs) and DSFMs of RSI with CNNs only for LUSC, which can easily affect the classification performance. To fully utilize the SSFMs and make up for the insufficiency of CNN in capturing the relationship information between the land-use objects of RSI, while reducing the loss of important information, we propose an effective dual-branch hybrid framework, HFCC-Net, for the LUSC task. The CNN in the upper branch extracts multi-scale DSFMs of the same scene using transfer learning techniques; the graph routing-based CapsNet in the lower branch is used to obtain SSFMs from DSFMs in different scales, and element-by-element summation achieves enhanced representations of SSFMs; a newly designed function is used to fuse the top-level DSFMs with SSFMs to generate discriminant feature maps (DFMs); and, finally, the DFMs are fed into classifier. We conducted sufficient experiments using HFCC-Net on four public datasets. The results show that our method has better classification performance compared to some existing CNN-based state-of-the-art methods.

Funder

Internal Parenting Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3