A Review of GAN-Based Super-Resolution Reconstruction for Optical Remote Sensing Images

Author:

Wang Xuan1ORCID,Sun Lijun1,Chehri Abdellah2ORCID,Song Yongchao1

Affiliation:

1. School of Computer and Control Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China

2. Department of Mathematics and Computer Science, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada

Abstract

High-resolution images have a wide range of applications in image compression, remote sensing, medical imaging, public safety, and other fields. The primary objective of super-resolution reconstruction of images is to reconstruct a given low-resolution image into a corresponding high-resolution image by a specific algorithm. With the emergence and swift advancement of generative adversarial networks (GANs), image super-resolution reconstruction is experiencing a new era of progress. Unfortunately, there has been a lack of comprehensive efforts to bring together the advancements made in the field of super-resolution reconstruction using generative adversarial networks. Hence, this paper presents a comprehensive overview of the super-resolution image reconstruction technique that utilizes generative adversarial networks. Initially, we examine the operational principles of generative adversarial networks, followed by an overview of the relevant research and background information on reconstructing remote sensing images through super-resolution techniques. Next, we discuss significant research on generative adversarial networks in high-resolution image reconstruction. We cover various aspects, such as datasets, evaluation criteria, and conventional models used for image reconstruction. Subsequently, the super-resolution reconstruction models based on generative adversarial networks are categorized based on whether the kernel blurring function is recognized and utilized during training. We provide a brief overview of the utilization of generative adversarial network models in analyzing remote sensing imagery. In conclusion, we present a prospective analysis of forthcoming research directions pertaining to super-resolution reconstruction methods that rely on generative adversarial networks.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3