A General Image Super-Resolution Reconstruction Technique for Walnut Object Detection Model

Author:

Wu Mingjie12ORCID,Yang Xuanxi3,Yun Lijun12,Yang Chenggui12,Chen Zaiqing12,Xia Yuelong12

Affiliation:

1. School of Information, Yunnan Normal University, Kunming 650500, China

2. Engineering Research Center of Computer Vision and Intelligent Control Technology, Department of Education of Yunnan Province, Kunming 650500, China

3. Centre for Planning and Policy Research, Yunnan Institute of Forest Inventory and Planning, Kunming 650500, China

Abstract

Object detection models are commonly used in yield estimation processes in intelligent walnut production. The accuracy of these models in capturing walnut features largely depends on the quality of the input images. Without changing the existing image acquisition devices, this study proposes a super-resolution reconstruction module for drone-acquired walnut images, named Walnut-SR, to enhance the detailed features of walnut fruits in images, thereby improving the detection accuracy of the object detection model. In Walnut-SR, a deep feature extraction backbone network called MDAARB (multilevel depth adaptive attention residual block) is designed to capture multiscale information through multilevel channel connections. Additionally, Walnut-SR incorporates an RRDB (residual-in-residual dense block) branch, enabling the module to focus on important feature information and reconstruct images with rich details. Finally, the CBAM (convolutional block attention module) attention mechanism is integrated into the shallow feature extraction residual branch to mitigate noise in shallow features. In 2× and 4× reconstruction experiments, objective evaluation results show that the PSNR and SSIM for 2× and 4× reconstruction reached 24.66 dB and 0.8031, and 19.26 dB and 0.4991, respectively. Subjective evaluation results indicate that Walnut-SR can reconstruct images with richer detail information and clearer texture features. Comparative experimental results of the integrated Walnut-SR module show significant improvements in mAP50 and mAP50:95 for object detection models compared to detection results using the original low-resolution images.

Funder

Key Project of Yunnan Basic Research Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3