Effects of Soil Texture on Soil Leaching and Cotton (Gossypium hirsutum L.) Growth under Combined Irrigation and Drainage

Author:

Wang Dongwang,Wang ZhenhuaORCID,Zhang Jinzhu,Zhou Bo,Lv Tingbo,Li Wenhao

Abstract

To further explore the effects of different soil textures on soil leaching and cotton (Gossypium hirsutum L.) growth using a combined irrigation and drainage technique and provide a theoretical basis for the improvement of saline alkali land in Xinjiang, we used a test pit experiment to test soil moisture, salinity, soil pH, permeability, cotton agronomic characteristics, cotton yield and quality, and water use efficiency in three soil textures (clay, loam, sand soil) under the combined irrigation and drainage (T1) and conventional drip irrigation (T2). We measured the soil moisture content in different soil layers of clay, loam and sandy soil under the T1 and T2 treatments. Clay and loam had better water retention than sandy soil, and the soil moisture under the combined irrigation and drainage treatment was slightly higher than that under conventional drip irrigation. Under T1, the average salt content and pH value in the 0–60 cm soil layer of clay, loam and sandy soil decreased by 14.09%, 14.21% and 12.35%, and 5.02%, 5.85% and 3.27%, respectively, compared with T2. Therefore, T2 reduced the salt content and pH value of shallow soil. Under T1 and T2, the relative permeability coefficient (K/K0) values in different soil textures at different growth stages of cotton were ranked as follows: sandy soil > loam > clay. Under T1, the K/K0 values for different soil textures at different growth stages of cotton were >1; therefore, T1 improved soil permeability. The yield and water use efficiency of seed cotton under T1 and T2 in different soil textures were ranked as follows: loam > clay > sand, and there were significant differences between the different treatments. In loam, the cotton yield and water use efficiency of the combined irrigation and drainage treatment were 6.37% and 13.70% higher than those for conventional drip irrigation treatment, respectively. By combining irrigation and drainage to adjust the soil moisture, salt, pH value and soil permeability of different soil textures, the root growth environment of crops can effectively be improved, which is of great significance to improving the utilization efficiency of water and fertilizer and promoting the growth of cotton.

Funder

Zhenhua Wang

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference45 articles.

1. Transport Feature of Soil Water-salt by Saline Water Irrigation under Subsurface Pipe Drainage;Wan;J. Irrig. Drain.,2016

2. Salt Transfer for Plastic Sheet Covered Cotton Field Using Drip Irrigation at Different Soil Texture in the North Edge of Dzungarian Basin;Zhang;J. Soil Water Conserv.,2009

3. Testing biodegradable films as alternatives to plastic films in enhancing cotton (Gossypium hirsutum L.) yield under mulched drip irrigation

4. Improving Yield and Quality of Processing Tomato (Lycopersicon esculentum Miller) Using Alternate Partial Root-Zone Drip Irrigation in Arid Northwest China

5. Combined Effect of Different Amounts of Irrigation and Mulch Films on Physiological Indexes and Yield of Drip-Irrigated Maize (Zea mays L.)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3