Improving Yield and Quality of Processing Tomato (Lycopersicon esculentum Miller) Using Alternate Partial Root-Zone Drip Irrigation in Arid Northwest China

Author:

Zhao Di,Wang ZhenhuaORCID,Zhang Jinzhu,Li Wenhao,Zhou Bo

Abstract

Processing tomato is one of the most important economic crops in Xinjiang, China, which was constrained with severe water shortage and extreme arid climate. Alternate partial root-zone irrigation (APRI) may provide an effective way to increase irrigation water use efficiency (iWUE) without yield reduction. However, limited studies concerned about applying APRI in processing tomato plantation have been done, especially combined with drip irrigation to further control the irrigation and improve iWUE. Therefore, the two-year pot experiments were conducted to study the effects of different irrigation treatments, including three APRI treatments (irrigation quota of 67.5, 51.6, and 43.7 mm, respectively), fixed partial root-zoon drip irrigation (FPRI, 67.5 mm) and conventional drip irrigation (CDI, 67.5 mm). The results indicated that APRI was an appropriate irrigation method in processing tomato plantation in arid desert area such as Xinjiang, as high irrigation quota of APRI (APRIH) significantly improved its yield without fruit quality reduction in comparison with those of CDI. However, the yield without fruit quality of FPRI significantly decreased. Even if the irrigation quota of APRI decreased to the medium level (APRIM, 51.6 mm), iWUE by increased 31.8–32.7% on the contrary, as irrigation water was saved by 23.6%; while keeping the yield and fruit quality. Therefore, APRIM is recommended for processing tomato plantation in arid northwest China, to increase plant growth, fruit quality, yield, and iWUE synergistically.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference44 articles.

1. Analysis on the status quo and development prospect of processing tomato industry in Xinjiang;Liu;Mod. Food.,2018

2. Fruit characteristic and flesh tissue feature of special firmness type processing tomato cultivar;Yang;Chin. Soc. Agric. Eng.,2017

3. Evaluating the effects of mulch and irrigation amount on soil water distribution and root zone water balance using HYDRUS-2D;Ming;Water,2015

4. The controlled alternative irrigation: A new approach for water saving regulation in farmland;Kang;Agric. Res. Arid Areas.,1997

5. Effect of alternate partial root-zone drip irrigation on soil bacterial communities and tomato yield

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3