All-Optical Modulation and Ultrafast Switching in MWIR with Sub-Wavelength Structured Silicon

Author:

Wu Rihan,Collins Jack,Chekulaev Dimitri,Kaplan Andrey

Abstract

We investigated and optimised the performance of the all-optical reflective modulation of the Mid-Wave Infrared (MWIR) signal by means of the optically-pumped sub-wavelength-structured optical membranes made of silicon. The membranes were optically pumped by a 60-femtosecond, 800-nm laser, while another laser operating in the MWIR ranging between 4 and 6 μ m was used to probe the optical response and modulation. We were able to achieve the conditions providing the modulation depth of 80% using the pump fluence of 3.8 mJ/cm 2 . To get a better insight into the performance and the modulation mechanism, we developed an optical model based on a combination of the Wentzel–Kramers–Brillouin approximation, Drude and Maxwell–Garnett theories. The model allowed us to estimate the values of the dielectric function, carrier concentration and scattering rate of the optically-excited membrane in the MWIR range. Using the model, we optimised the performance and found the conditions at which the reflective modulation can be operated with the ultrafast response of 0.55 ps and modulation contrast of 30%.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3