Active control of mid-wavelength infrared non-linearity in silicon photonic crystal slab

Author:

Wu Rihan,Navarro-Cia MiguelORCID,Chekulaev Dimitri1,Collins Jack,Kaplan AndreyORCID

Affiliation:

1. University of Sheffield

Abstract

Natural materials’ inherently weak nonlinear response demands the design of artificial substitutes to avoid optically large samples and complex phase-matching techniques. Silicon photonic crystals are promising artificial materials for this quest. Their nonlinear properties can be modulated optically, paving the way for applications ranging from ultrafast information processing to quantum technologies. A two-dimensional 15-μm-thick silicon photonic structure, comprising a hexagonal array of air holes traversing the slab’s thickness, has been designed to support a guided resonance for the light with a wavelength of 4-μm. At the resonance conditions, a transverse mode of the light is strongly confined between the holes in the "veins" of the silicon component. Owing to the confinement, the structure exhibits a ratio of nonlinear to linear absorption coefficients threefold higher than the uniform silicon slab of the same thickness. A customised time-resolved Z-scan method with provisions to accommodate ultrafast pump-probe measurements was used to investigate and quantify the non-linear response. We show that optically pumping free charge carriers into the structure decouples the incoming light from the resonance and reduces the non-linear response. The time-resolved measurements suggest that the decoupling is a relatively long-lived effect on the scale comparable to the non-radiative recombination in the bulk material. Moreover, we demonstrate that the excited free carriers are not the source of the nonlinearity, as this property is determined by the structure design.

Funder

European Union Horizon 2020

Engineering and Physical Sciences Research Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3