Hyperspectral Inversion of Petroleum Hydrocarbon Contents in Soil Based on Continuum Removal and Wavelet Packet Decomposition

Author:

Chen Chaoqun,Jiang Qigang,Zhang Zhenchao,Shi Pengfei,Xu Yan,Liu Bin,Xi Jing,Chang ShouZhiORCID

Abstract

Hyperspectral remote sensing is widely used to detect petroleum hydrocarbon pollution in soil monitoring. Different spectral pretreatment methods seriously affect the prediction and analysis of petroleum hydrocarbon contents (PHCs). This study adopted a combined spectral data preprocessing technique that improves the prediction accuracy of petroleum hydrocarbons in soil. We combined continuum removal and wavelet packet decomposition (CR–Daubechies 3 (db3)) to process the hyperspectral reflectance data of 26 soil samples in the oil production work area in China and judged the correlation between spectral reflectance and petroleum hydrocarbons in soil. Partial least squares regression was used to construct an optimal model for the inversion of PHCs in soil and the leave-one-out cross-validation was used to select the best factor number. The best model of soil petroleum hydrocarbon inversion was determined by comprehensively comparing the initial spectrum, db3 to high-frequency spectrum, db3 to low-frequency spectrum, after-continuum removal spectrum, CR-db3 to high-frequency spectrum, and CR-db3 to low-frequency spectrum comprehensively. The main contributions of this study are as follows: (1) three-layer decomposition with CR-db3 can improve the correlation between spectral reflectance and PHCs and effectively improve the sensitivity of the spectrum to PHCs; (2) the prediction accuracy of the high-frequency spectrum of wavelet packet decomposition for PHCs in soil is higher than that of low-frequency information; (3) the proposed petroleum hydrocarbon prediction model based on CR-db3 processed spectra to obtain high-frequency information is optimal (coefficient of determination = 0.977, root mean square error of calibration = 3.078, root mean square error of cross-validation = 4.727, root mean square error of prediction = 4.498, ratio of performance to deviation = 6.12).

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference37 articles.

1. Petroleum Hydrocarbons

2. Chinese Journal of Rock Mechanics and Engineering;Li;Chin. J. Rock Mech. Eng.,2019

3. Soils and Human Health

4. Review of Soil Pollution in Petrochemical Industry;Yu;Contemp. Chem. Ind.,2019

5. Review of Monitoring Petroleum-Hydrocarbon Contaminated Soils with Visible and Near-Infrared Spectroscopy;Chen;Spectrosc. Spectr. Anal.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3