Hyperspectral Inversion of Heavy Metal Copper Content in Corn Leaves Based on DRS–XGBoost

Author:

Wu Bing1ORCID,Yang Keming1ORCID,Li Yanru1ORCID,He Jiale1

Affiliation:

1. College of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China

Abstract

This study proposes a method that is used for the nondestructive detection of copper content in corn leaves, which is achieved via visible–near infrared spectroscopy. In this paper, we collected the visible–near infrared spectral data of corn leaves that were planted in soils undergoing different gradients of heavy metal copper stress. Then, a preliminary pretreatment was carried out to obtain the original spectrum (OS), the continuous removal spectrum (CR), and the derivative of ratio spectroscopy (DRS). Singular value decomposition was used for spectral denoising. The characteristic bands corresponding to the OS, CR, and DRS were determined using correlation analysis, as well as mutual information. Based on training the extreme gradient boosting tree (XGBoost) predictive model using feature bands, the copper content in corn leaves was predicted, and a comparative analysis was conducted with the commonly used partial least squares regression (PLSR) model in regression analysis. The results showed that the accuracy of the PLSR and XGBoost models, which were established with CR and DRS, were higher than that of the OS, among which the DRS model had the highest accuracy. For the validation set in the PLSR model, the coefficient of determination (R2) was 0.72, the root mean square error (RMSE) was 1.21 mg/kg, and the residual predictive deviation (RPD) was 1.89. For the validation set in the XGBoost model, the R2 was 0.86, the RMSE was 0.86 mg/kg, and the RPD was 2.66. At the same time, the spectral data of the field-planted corn near a mining area were selected to test the robustness of the model. Among them, the DRS had a higher accuracy in the XGBoost model, where its R2 was 0.51, its RMSE was 0.86 mg/kg, and its RPD was 1.45, thus indicating that the model can better predict the copper content in corn leaves and that the model has a higher robustness, which could provide new ideas for the prediction of heavy metal content in crops.

Funder

Science and Technology Fundamental Resources Investigation Program

National Natural Science Foundation of China

China University of Mining and Technology (Beijing) Doctoral Student Top Innovative Talent Cultivation Fund Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3