Indoor Occupancy Sensing via Networked Nodes (2012–2022): A Review

Author:

Emad-Ud-Din Muhammad1ORCID,Wang Ya1234

Affiliation:

1. Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA

2. J. Mike Walker ‘66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA

3. Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA

4. Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA

Abstract

In the past decade, different sensing mechanisms and algorithms have been developed to detect or estimate indoor occupancy. One of the most recent advancements is using networked sensor nodes to create a more comprehensive occupancy detection system where multiple sensors can identify human presence within more expansive areas while delivering enhanced accuracy compared to a system that relies on stand-alone sensor nodes. The present work reviews the studies from 2012 to 2022 that use networked sensor nodes to detect indoor occupancy, focusing on PIR-based sensors. Methods are compared based on pivotal ADPs that play a significant role in selecting an occupancy detection system for applications such as Health and Safety or occupant comfort. These parameters include accuracy, information requirement, maximum sensor failure and minimum observation rate, and feasible detection area. We briefly describe the overview of occupancy detection criteria used by each study and introduce a metric called “sensor node deployment density” through our analysis. This metric captures the strength of network-level data filtering and fusion algorithms found in the literature. It is hinged on the fact that a robust occupancy estimation algorithm requires a minimal number of nodes to estimate occupancy. This review only focuses on the occupancy estimation models for networked sensor nodes. It thus provides a standardized insight into networked nodes’ occupancy sensing pipelines, which employ data fusion strategies, network-level machine learning algorithms, and occupancy estimation algorithms. This review thus helps determine the suitability of the reviewed methods to a standard set of application areas by analyzing their gaps.

Funder

U.S. Department of Energy, Advanced Research Projects Agency-Energy

U.S. National Science Foundation

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3