Groundwater Management for Agricultural Purposes Using Fuzzy Logic Technique in an Arid Region

Author:

Al-Rashidi Amjad1ORCID,Sabarathinam Chidambaram1ORCID,Samayamanthula Dhanu Radha1ORCID,Alsabti Bedour1,Rashid Tariq1

Affiliation:

1. Water Resources Development and Management Program, Water Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait

Abstract

The study aimed to determine groundwater’s suitability for irrigation and cattle rearing in Kuwait. In this regard, groundwater samples were collected from Umm Al Aish (UA) and adjoining Rawdhatain (RA) water wellfields to develop groundwater suitability maps for irrigation purposes using the fuzzy logic technique in ArcGIS. RA was dominated by Na-Cl, Na-Ca, and Ca-SO4 water types, whereas UA was dominated by the Ca-Mg water type. Due to the influence of the temperature and pCO2, the carbonates were inferred to be more susceptible to precipitation in the soil than the sulfates. The ternary plots for both regions revealed that the samples’ suitability ranged from good to unsuitable. Spatial maps of nine significant parameters governing the irrigation suitability of water were mapped and integrated using the fuzzy membership values for both regions. The final suitability map derived by overlaying all the considered parameters indicated that 8% of the RA region was categorized as excellent, while UA showed only 5%. Samples situated in the study areas showed an excellent to very satisfactory range for livestock consumption. Developing a monitoring system along with innovative water resource management systems is essential in maintaining the fertility of the soil and existing groundwater reserves.

Funder

International Atomic Energy Agency

Kuwait Institute for Scientific Research

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3