Influence of Dissolved Oxygen, Water Level and Temperature on Dissolved Organic Carbon in Coastal Groundwater

Author:

Rajendiran Thilagavathi1ORCID,Sabarathinam Chidambaram2ORCID,Panda Banajarani3,Elumalai Vetrimurugan4ORCID

Affiliation:

1. Department of Geology, V.O. Chidambaram College, Tuticorin 628008, India

2. Water Research Center, Kuwait Institute for Scientific Research, Kuwait City 13109, Kuwait

3. Department of Geology, Ravenshaw University, Cuttack 753003, India

4. Department of Hydrology, University of Zululand, Kwa Dlangezwa 3886, South Africa

Abstract

The quality of groundwater has been severely impacted by urbanization around coasts. The change in climate and land use patterns has deteriorated the quality and availability of groundwater. One of the main issues in contemporary groundwater quality research is dissolved organic carbon (DOC) in the water. The influence of DO, water level and water temperature on DOC in groundwater was identified in the current study by sampling 68 groundwater samples. The analytical results revealed that ~18% of total samples have DOC > 5 mg/L. The groundwater samples represented in the urban regions show high DOC. The samples with higher DOC correlated positively with dissolved inorganic ions, such as Ca, K, NO3, Fe and DO. Domestic wastewater, agricultural runoff and local geology all have an impact on the DOC of groundwater. Groundwater chemistry is shown to be controlled by both aerobic and anaerobic conditions based on the DOC’s interactions with other ions. The study interrelates various sources, such as land use, geology, water level and temperature, to the DOC in groundwater and infers that the levels are higher in shallow groundwater, predominantly around the built-up region followed by the agricultural region. The temperature changes enhance the DOC in groundwater due to the variation in microbial activity. The shallow water level with a lower temperature shows the maximum DOC. Apart from the sediment organic matter and microbes, the study also attributes land use pattern to the source of DOC in groundwater.

Funder

University Grants Commission

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Reference98 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3