Prevalence of High-Risk β-Lactam Resistance Genes in Family Livestock Farms in Danjiangkou Reservoir Basin, Central China

Author:

Yang Fengxia,Zhang Zulin,Li Zijun,Han Bingjun,Zhang Keqiang,Yang Peng,Ding Yongzhen

Abstract

The propagation of antibiotic resistance genes (ARGs) from domestic livestock manure is an unnegligible important environmental problem. There is an increasing need to understand the role of domestic livestock manure in causing antibiotic resistance in the environment to minimize risks to human health. Here, we targeted β-lactam resistance genes (bla genes), primarily discovered in clinical settings, to compare the high-risk ARG profile and their main spreading vectors of 26 family livestock farms in China and analyze the effects of domestic livestock manure on their receiving farmland environments. Results showed that the high-risk bla genes and their spreading carriers were widely prevalent in livestock and poultry manure from family farms. The blaampC gene encoding extended-spectrum AmpC β-lactamases, as well as its corresponding spreading carrier (class-1 integron), had the highest occurrence level. The bla gene abundance in family chicken farms was higher than that in family swine and cattle farms, while the bla gene contamination in the feces of laying hens or beef cattle was worse than that in corresponding broiler chickens or dairy cattle. Notably, the application from domestic livestock manure led to substantial emission of bla genes, which significantly increased the abundance of high-risk resistance genes in farmland soil by 12–46 times. This study demonstrated the prevalence and severity of high-risk resistance genes in domestic livestock and poultry manure; meanwhile, the discharge of bla genes also highlighted the need to mitigate the persistence and spread of these elevated high-risk genes in agricultural systems.

Funder

National Natural Science Foundation of China

Fundamental Cutting-edge Projects of Research Institute

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3