Field Investigation of Effect of Plants on Cracks of Compacted Clay Covers at a Contaminated Site

Author:

Bi Yu-ZhangORCID,Fu Xian-LeiORCID,Zhou Shi-Ji,Ni Jin,Du Yan-JunORCID

Abstract

Compacted clay covers (CCCs) are effective in restricting the upward migration of volatile organic compound (VOC) and semi-volatile organic compound (SVOC) vapors released mainly from unsaturated contaminated soils and hence mitigate the risks to human health. Desiccation cracking of CCCs would result in numerous preferential channels. VOC or SVOC vapors can prefereially migrate through the cracks and emit into the atmosphere, exposing threats to human health and surrounding environmental acceptors. This study presented results of comprehensive field investigation of desiccation crack distribution in CCCs, where four herbaceous plants were covered at the industrial contaminated site in. The plants included Trefoil, Bermuda grass, Conyza Canadensis, and Paspalum, and the corresponding planting areas were labeled as S1, S2, S3, and S4, respectively. The quantity and geometry parameters of the cracks including crack width, depth, and length, were investigated. The results showed that the cracks of the CCCs were mainly distributed in the areas of S3 (Conyza Canadensis) and S4 (Paspalum), where more cracks were formed when the degree of compaction (DOC) of the CCCs was less than 87%. In addition, the results revealed that: (1) no cracks were found in the area S1 (Trefoil); (2) the quantity, average width, average depth, average length, and maximal length of the cracks in the investigated areas followed S4 (Paspalum) > S3 (Conyza Canadensis) > S2 (Bermuda grass); (3) the maximal crack length in the area S2 (Bermuda grass) was the shortest, which was approximately one-seventh and one-eighth of those in the areas S3 (Conyza Canadensis) and S4 (Paspalum), respectively; and (4) the maximal width and depth of the cracks followed S3 (Conyza Canadensis) > S4 (Paspalum) > S2 (Bermuda grass).

Funder

National Key Research and Development Program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3