Abstract
Compacted clay covers (CCCs) are effective in restricting the upward migration of volatile organic compound (VOC) and semi-volatile organic compound (SVOC) vapors released mainly from unsaturated contaminated soils and hence mitigate the risks to human health. Desiccation cracking of CCCs would result in numerous preferential channels. VOC or SVOC vapors can prefereially migrate through the cracks and emit into the atmosphere, exposing threats to human health and surrounding environmental acceptors. This study presented results of comprehensive field investigation of desiccation crack distribution in CCCs, where four herbaceous plants were covered at the industrial contaminated site in. The plants included Trefoil, Bermuda grass, Conyza Canadensis, and Paspalum, and the corresponding planting areas were labeled as S1, S2, S3, and S4, respectively. The quantity and geometry parameters of the cracks including crack width, depth, and length, were investigated. The results showed that the cracks of the CCCs were mainly distributed in the areas of S3 (Conyza Canadensis) and S4 (Paspalum), where more cracks were formed when the degree of compaction (DOC) of the CCCs was less than 87%. In addition, the results revealed that: (1) no cracks were found in the area S1 (Trefoil); (2) the quantity, average width, average depth, average length, and maximal length of the cracks in the investigated areas followed S4 (Paspalum) > S3 (Conyza Canadensis) > S2 (Bermuda grass); (3) the maximal crack length in the area S2 (Bermuda grass) was the shortest, which was approximately one-seventh and one-eighth of those in the areas S3 (Conyza Canadensis) and S4 (Paspalum), respectively; and (4) the maximal width and depth of the cracks followed S3 (Conyza Canadensis) > S4 (Paspalum) > S2 (Bermuda grass).
Funder
National Key Research and Development Program
National Natural Science Foundation of China
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献