Evaluation of Performance of Polyacrylamide-Modified Compacted Clay as a Gas Barrier: Water Retention and Gas Permeability and Diffusion Characteristics

Author:

Bi Yu-ZhangORCID,Wen Jia-Ming,Wu Hao-LiangORCID,Du Yan-JunORCID

Abstract

In this paper, the performance of a gas barrier that consisted of polyacrylamide (PAM)-modified compacted clayey soil was experimentally explored. The moisture content and water loss characteristics of the tested soils were adopted as indicative indices of water retention capacity (WRC). The gas permeability (Kp) and gas diffusion coefficient (Dp) of the modified compacted clays were evaluated via gas permeability and gas diffusion tests. The test results showed that the moisture content of the modified compacted clay samples subjected to drying tests increased with increasing polyacrylamide content. Kp and Dp decreased with increasing PAM content. Compared with 0.2% PAM content, the Kp of the sample with 1.0% PAM was reduced by ten times, and the Dp was reduced to ~35%. Compared to the unmodified clay, the liquid limit of the PAM-modified clay increased by 45~55%. Comparison of the liquid limit tests between this study and previous studies revealed that the liquid limit ratio of the zwitterionic polyacrylamide (ZP)-modified soil was much higher than the other material-modified soils. The results of this study are useful to facilitate the application of modified compacted clays as gas barrier materials at industrial contaminated sites.

Funder

Postgraduate Research&Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3