Influential Nodes Identification in the Air Pollution Spatial Correlation Weighted Networks and Collaborative Governance: Taking China’s Three Urban Agglomerations as Examples

Author:

Guo FeipengORCID,Wang Zifan,Ji ShaoboORCID,Lu Qibei

Abstract

Nowadays, driven by green and low-carbon development, accelerating the innovation of joint prevention and control system of air pollution and collaborating to reduce greenhouse gases has become the focus of China’s air pollution prevention and control during the “Fourteenth Five-Year Plan” period (2021–2025). In this paper, the air quality index (AQI) data of 48 cities in three major urban agglomerations of Beijing-Tianjin-Hebei, Pearl River Delta and Yangtze River Delta, were selected as samples. Firstly, the air pollution spatial correlation weighted networks of three urban agglomerations are constructed and the overall characteristics of the networks are analyzed. Secondly, an influential nodes identification method, local-and-global-influence for weighted network (W_LGI), is proposed to identify the influential cities in relatively central positions in the networks. Then, the study area is further focused to include influential cities. This paper builds the air pollution spatial correlation weighted network within an influential city to excavate influential nodes in the city network. It is found that these influential nodes are most closely associated with the other nodes in terms of spatial pollution, and have a certain ability to transmit pollutants to the surrounding nodes. Finally, this paper puts forward policy suggestions for the prevention and control of air pollution from the perspective of the spatial linkage of air pollution. These will improve the efficiency and effectiveness of air pollution prevention and control, jointly achieve green development and help achieve the “carbon peak and carbon neutrality” goals.

Funder

Philosophy and Social Science Planning Project of Zhejiang Province, China

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3