Spatial Dynamic Interaction Effects and Formation Mechanisms of Air Pollution in the Central Plains Urban Agglomeration in China

Author:

Huang Jie12ORCID,Lu Hongyang1,Huang Yajun12

Affiliation:

1. School of Business, Xinyang Normal University, Xinyang 464000, China

2. Research Institute of the Economic and Social Development in the Dabie Mountains, Xinyang Normal University, Xinyang 464000, China

Abstract

Accurately identifying the dynamic interaction effects and network structure characteristics of air pollution is essential for effective collaborative governance. This study investigates the spatial dynamic interactions of air pollution among 30 cities in the Central Plains Urban Agglomeration using convergent cross mapping. Social network analysis is applied to assess the overall and node characteristics of the spatial interaction network, while key driving factors are analyzed using an exponential random graph model. The findings reveal that air pollution levels in the Central Plains Urban Agglomeration initially increase before they decrease, with heavily polluted cities transitioning from centralized to sporadic distribution. Among the interactions, Heze’s air pollution impact on Kaifeng was the strongest, while Xinxiang’s impact on Changzhi was the weakest. The emission and receiving effects peaked during 2010–2012. The air pollution interactions among cities exhibit significant network characteristics, with block model results indicating that emitting and receiving relationships are primarily concentrated in the bidirectional spillover plate. Natural factors such as temperature and precipitation significantly influence the spatial interaction network. Economic and social factors like economic level and industrial sector proportion also have a significant impact. However, population density does not influence the spatial interaction network. This study contributes to understanding the spatial network of air pollution, thereby enhancing strategies for optimizing regional collaborative governance efforts to address air pollution.

Funder

National Natural Science Foundation of China

Henan Provincial Soft Science Research Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3