Enhanced Nutrient Removal in A2N Effluent by Reclaimed Biochar Adsorption

Author:

Chen Peng,Wu Junkang,He Yue,Zhang Yaping,Yu RanORCID,Lu Xiwu

Abstract

The excessive nitrogen and phosphorus discharged into the water environment will cause water eutrophication and thus disrupt the water ecosystem and even exert biological toxicities. In this study, the absorption removal of nitrogen and phosphorus from the anaerobic tank in an anaerobic–anoxic/nitrifying system using four different kinds of biowaste-reclaimed biochars were investigated and compared. The effects of temperature and pH on nutrient adsorption removal were further investigated. The four kinds of biochar were successfully prepared and well characterized using a scanning electron microscope, fourier transform infrared spectroscopy, X-ray diffraction and Brunner−Emmet−Teller methods. Generally, there was no significant change in chemical oxygen demand (COD) and NH4+-N removal efficiencies when treated by the different biochars, while the activated sludge biochar (ASB) displayed the highest total phosphorus (TP) removal efficiency. The initial TP concentrations (<40 mg/L) displayed no remarkable effects on the TP adsorption removal, while the increase of temperature generally enhanced TP and NH4+-N adsorptions on the ASB. Besides, the increase of pH significantly promoted NH4+-N removal but depressed TP removal. Moreover, the adsorption process of TP by the ASB complies with the secondary kinetic model, suggesting the chemical precipitation and physical electrostatic interaction mechanisms of TP adsorption removal. However, the adsorption of NH4+-N conformed to the inner-particle diffusion model, indicating that the NH4+-N adsorption was mainly involved with pore diffusions in the particles.

Funder

National Science and Technology Major Project

National Natural Science Foundation of China

Natural Science Foundation of the Higher Education Institutions of Jiangsu Province

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Constructed Wetlands: Insights and Future Directions in Sustainable Approach for Wastewater Treatment;Earth and Environmental Sciences Library;2024

2. Effects of Physicochemical Parameters on Struvite Crystallization Based on Kinetics;International Journal of Environmental Research and Public Health;2022-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3