Spatiotemporal Variations in Nitrogen and Phosphorus in a Large Man-Made Lake and Their Relationships with Human Activities

Author:

Zhou LigangORCID,Wang Xiangdong,Zhang Xiaoming,Zhao Yang,Zhu Panpan,Zhao Xiang,Li Xiaole

Abstract

Nitrogen and phosphorus excessive enrichment are major causes of water eutrophication, and variations in nutrients enrichment are strongly influenced by human activities. In this study, annual average water quality from 2001 to 2018 was used to explore the spatiotemporal variations in total nitrogen (TN) and total phosphorus (TP) and their relationships with human activities. Spatially, TN and TP concentrations exhibited significant variations across the five sub-lake zones, and their values were relatively higher in the NW lake zone than the other sub-lake zones. Temporally, TN concentration exhibited weak correlations with years in the NW (R2 = 0.37, p < 0.05) and NE (R2 = 0.43, p < 0.05) lake zones and significant and positive correlations with years in the SW (R2 = 0.62, p < 0.05), SE (R2 = 0.79, p < 0.05), and C (R2 = 0.84, p < 0.05) lake zones. TP concentration exhibited decreasing trends in all lake zones except the NW lake zone (R2 = 0.37, p < 0.05), its value shows a relatively low level and is the restrictive factor to algal growth. The trophic state of the Lake Qiandaohu was determined as mesotrophic. Gross domestic product (GDP) and construction land exhibited strong correlations with TN and TP. Moreover, agriculture nonpoint source pollution was the largest contributor to the excessive enrichment of TN and TP, resulting in water eutrophication. In addition, aquaculture was another major source of nutrients starting in 1999. Although the managers of Lake Qiandaohu implemented a protection-oriented fishery policy, good results cannot be easily achieved with a unilateral policy concerning environmental protection. Thus, comprehensive policies may be more effective than unilateral policies.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3