High-Coverage Reconstruction of XCO2 Using Multisource Satellite Remote Sensing Data in Beijing–Tianjin–Hebei Region

Author:

Wang WeiORCID,He Junchen,Feng HuihuiORCID,Jin Zhili

Abstract

The extreme climate caused by global warming has had a great impact on the earth’s ecology. As the main greenhouse gas, atmospheric CO2 concentration change and its spatial distribution are among the main uncertain factors in climate change assessment. Remote sensing satellites can obtain changes in CO2 concentration in the global atmosphere. However, some problems (e.g., low time resolution and incomplete coverage) caused by the satellite observation mode and clouds/aerosols still exist. By analyzing sources of atmospheric CO2 and various factors affecting the spatial distribution of CO2, this study used multisource satellite-based data and a random forest model to reconstruct the daily CO2 column concentration (XCO2) with full spatial coverage in the Beijing–Tianjin–Hebei region. Based on a matched data set from 1 January 2015, to 31 December 2019, the performance of the model is demonstrated by the determination coefficient (R2) = 0.96, root mean square error (RMSE) = 1.09 ppm, and mean absolute error (MAE) = 0.56 ppm. Meanwhile, the tenfold cross-validation (10-CV) results based on samples show R2 = 0.91, RMSE = 1.68 ppm, and MAE = 0.88 ppm, and the 10-CV results based on spatial location show R2 = 0.91, RMSE = 1.68 ppm, and MAE = 0.88 ppm. Finally, the spatially seamless mapping of daily XCO2 concentrations from 2015 to 2019 in the Beijing–Tianjin–Hebei region was conducted using the established model. The study of the spatial distribution of XCO2 concentration in the Beijing–Tianjin–Hebei region shows its spatial differentiation and seasonal variation characteristics. Moreover, daily XCO2 map has the potential to monitor regional carbon emissions and evaluate emission reduction.

Funder

Basic Science-Center Project of National Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference45 articles.

1. Global Carbon Budget 2020

2. WMO Statement on the State of the Global Climate in 2019;Kappelle,2020

3. IPCC, Climate Change 2014: Synthesis Report;Pachauri,2014

4. ‘Climate value at risk’ of global financial assets

5. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3