An Interpolation and Prediction Algorithm for XCO2 Based on Multi-Source Time Series Data

Author:

Hu Kai12ORCID,Zhang Qi1ORCID,Feng Xinyan1ORCID,Liu Ziran1ORCID,Shao Pengfei1ORCID,Xia Min12ORCID,Ye Xiaoling12

Affiliation:

1. School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

Carbon satellites are an important observation tool for analyzing ground carbon emission. From the perspective of the Earth’s scale, the spatiotemporal sparse characteristics of raw data observed from carbon satellite requires the accurate interpolation of data, and based on only this work, people predict future carbon emission trends and formulate appropriate management and conservation strategies. The existing research work has not fully considered the close correlation between data and seasons, as well as the characteristics accumulated over a long time scale. In this paper, firstly, by employing extreme random forests and auxiliary data, we reconstruct a daily average CO2 dataset at a resolution of 0.25°, and achieve a validated determination coefficient of 0.92. Secondly, introducing technologies such as Time Convolutional Networks (TCN), Channel Attention Mechanism (CAM), and Long Short-Term Memory networks (LSTM), we conduct atmospheric CO2 concentration interpolation and predictions. When conducting predictive analysis for the Yangtze River Delta region, we train the model by using quarterly data from 2016 to 2020; the correlation coefficient in summer is 0.94, and in winter it is 0.91. These experimental data indicate that compared to other algorithms, this algorithm has a significantly better performance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference58 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3