Oral Microcosm Biofilms Grown under Conditions Progressing from Peri-Implant Health, Peri-Implant Mucositis, and Peri-Implantitis

Author:

Sousa VanessaORCID,Spratt Dave,Davrandi Mehmet,Mardas Nikos,Beltrán VíctorORCID,Donos NikolaosORCID

Abstract

Peri-implantitis is a disease influenced by dysbiotic microbial communities that play a role in the short- and long-term outcomes of its clinical treatment. The ecological triggers that establish the progression from peri-implant mucositis to peri-implantitis remain unknown. This investigation describes the development of a novel in vitro microcosm biofilm model. Biofilms were grown over 30 days over machined titanium discs in a constant depth film fermentor (CDFF), which was inoculated (I) with pooled human saliva. Following longitudinal biofilm sampling across peri-implant health (PH), peri-implant mucositis (PM), and peri-implantitis (PI) conditions, the characterisation of the biofilms was performed. The biofilm analyses included imaging by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM), selective and non-selective culture media of viable biofilms, and 16S rRNA gene amplification and sequencing. Bacterial qualitative shifts were observed by CLSM and SEM across conditions, which were defined by characteristic phenotypes. A total of 9 phyla, 83 genera, and 156 species were identified throughout the experiment. The phyla Proteobacteria, Bacteroidetes, Firmicutes, Fusobacteria, and Actinobacteria showed the highest prevalence in PI conditions. This novel in vitro microcosm model provides a high-throughput alternative for growing microcosm biofilms resembling an in vitro progression from PH–PM–PI conditions.

Funder

UCLH/UCL Biomedical Research Centre

National Institute for Health Research

University College London

National Council for Science and Technology

Institut Straumann AG

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3