Abstract
The accumulation of the radioactive gas radon in closed environments, such as dwellings, is the result of a quite complex set of processes related to the contribution of different sources. As it undergoes different physical mechanisms, all occurring at the same time, models describing the general dynamic turns out to be difficult to apply because of the dependence on many parameters not easy to measure or calculate. In this context, the authors developed, in a previous work, a simplified approach based on the combination of a physics-mathematical model and on-site experimental measurements. Three experimental studies were performed in order to preliminarily test the goodness of the model to simulate indoor radon concentrations in closed environments. In this paper, an application on a new experimental site was realized in order to evaluate the adaptability of the model to different house typologies and environmental contexts. Radon activity measurements were performed using a portable radon detector and results, showing again good performance of the model. Results are discussed and future efforts are outlined for the refining and implementation of the model into software.
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献