Radon on Mt. Etna (Italy): a useful tracer of geodynamic processes and a potential health hazard to populations

Author:

Giammanco Salvatore,Bonfanti Pietro,Neri Marco

Abstract

Radon gas and its radioactive daughters have been extensively studied on Mt. Etna, both in local volcanic rocks and in all types of fluid emissions from the volcano (crater gases, fumaroles, mofettes, soil gases, groundwaters). The first measurements date back to 1976 and were carried out both in local volcanic rocks and in the crater plume. Since then, fifty-four scientific articles have been published. The largest majority of them (more than 50%) correlated radon emissions with volcanic activity and/or magma dynamics inside Mt. Etna. Many others were focused on possible correlations between time variations of in-soil radon and tectonic activity. The concentration of radionuclides in Etna volcanic rocks was measured on several occasions in order to set background values of radon parents and to study the dynamics of Etna magmas. Some articles analyzed the concentrations of radon in Etna groundwaters and their temporal changes in relation to volcanic activity. Only a few studies focused on methodological aspects of radon measurements in the laboratory. Finally, in recent years, geoscientists began to analyze the possible negative effects on human health from high concentrations of indoor radon in houses near active faults. The overall results show that, in most cases, it is possible to understand the endogenous mechanisms that cause changes in soil radon release from rocks and its migration to the surface. Several physical models were produced to explain how those changes were correlated with Etna’s volcanic activity, making them potential precursors, especially in the cases of eruptive paroxysms. More complex is the analysis of radon changes in relation to tectonic activity. Indeed, if measurements of radon in soil is now considered a robust methodology for identifying buried faults, radon time variations are not always clearly correlated with seismic activity. This difficulty is likely due to the complex interplay between tectonic stress, magma migration/eruption and gas release through faults. In any case, the potential high hazard for human health due to high concentrations of indoor radon in houses close to faults seems to be a well-established fact, which requires particular attention both from the scientific community and the public health authorities.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3