The Influence of a Fire at an Illegal Landfill in Southern Poland on the Formation of Toxic Compounds and Their Impact on the Natural Environment

Author:

Rykała WojciechORCID,Fabiańska Monika J.ORCID,Dąbrowska DominikaORCID

Abstract

Landfill fires pose a real threat to the environment as they cause the migration of pollutants to the atmosphere and water sources. A greater risk is observed in the case of wild landfills, which do not have adequate isolation from the ground. The aim of this article is to present the results of studies on the toxicity of waste from a fire in a landfill in Trzebinia (southern Poland). Both soil and waste samples were investigated. The samples were analyzed using the GC-MS method and the leachates using ICP-OES. A total of 32 samples of incinerated waste and soil were collected. The organic compounds included naphthalene, fluorene, phenanthrene, anthracene, acenaphthene, acenaphthylene, fluoranthene, pyrene, benzo (c) phenanthrene, benzo (a) anthracene, chrysene, benzo (ghi) fluoranthene, benzo (b + k) fluoranthene, benzo (a) fluoranthene, benzo (c) fluoranthene, benzo (a) pyrene, benzo (e) pyrene, perylene, indeno[1,2,3-cd] pyrene, benzo (ghi) perylene, and dibenzo (a + h) anthracene. Among the inorganic parameters, sulfates, chlorides, arsenic, boron, cadmium, copper, lead, and zinc were taken into account. Phenanthrene reached values exceeding 33 mg/L. Fluoranthene dominated in most of the samples. Sulfates and chlorides were present in the samples in concentrations exceeding 400 and 50 mg/L, respectively. Compounds contained in burnt waste may have a negative impact on soil and water health safety. Therefore, it is important to conduct research and counteract the negative effects of waste fires.

Funder

University of Silesia, Doctoral School

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3