Chemical Composition and Hazardous Effects of Leachate from the Active Municipal Solid Waste Landfill Surrounded by Farmlands

Author:

Vaverková Magdalena DariaORCID,Elbl JakubORCID,Koda EugeniuszORCID,Adamcová DanaORCID,Bilgin AylaORCID,Lukas VojtěchORCID,Podlasek AnnaORCID,Kintl Antonín,Wdowska Małgorzata,Brtnický Martin,Zloch Jan

Abstract

Landfill leachates are potentially harmful to the environment and to human health. The objective of this study was to characterize leachates in order to analyze whether a relationship exists between the stored waste and the composition of leachates, and to detect possible leakages of pollutants into the environment. To achieve these objectives, field data, Global Positioning System data and physico-chemical data were used. Biological tests are becoming increasingly popular in determining leachate toxicity; therefore, two toxicity tests were performed with the seeds of white mustard (Sinapis alba L.) and duckweed (Lemna minor L.). Leachates were sampled from the leachate pond. Groundwater quality was monitored by using drill holes. The research and analysis carried out are important to determine their potential impact on agricultural areas located near the landfill. Demonstrably increased (P < 0.05) concentrations of heavy metals were detected only in the leachate pond which closes the landfill body, where it links up with the landfill insulation layer. Water sampled from drill holes reaching into groundwater was not contaminated. The results showed that the leachates did not leak outside the landfill. Nevertheless, they were found to be phytotoxic. Both toxicity tests showed that the increasing amount of leachates resulted in the increasing growth inhibition of the tested plants. The proper handling of leachates should have been ensured.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3