Multilayer Perceptron-Based Real-Time Intradialytic Hypotension Prediction Using Patient Baseline Information and Heart-Rate Variation

Author:

Bae Tae WukORCID,Kim Min Seong,Park Jong Won,Kwon Kee KooORCID,Kim Kyu HyungORCID

Abstract

Intradialytic hypotension (IDH) is a common side effect that occurs during hemodialysis and poses a great risk for dialysis patients. Many studies have been conducted so far to predict IDH, but most of these could not be applied in real-time because they used only underlying patient information or static patient disease information. In this study, we propose a multilayer perceptron (MP)-based IDH prediction model using heart rate (HR) information corresponding to time-series information and static data of patients. This study aimed to validate whether HR differences and HR slope information affect real-time IDH prediction in patients undergoing hemodialysis. Clinical data were collected from 80 hemodialysis patients from 9 September to 17 October 2020, in the artificial kidney room at Yeungnam University Medical Center (YUMC), Daegu, South Korea. The patients typically underwent hemodialysis 12 times during this period, 1 to 2 h per session. Therefore, the HR difference and HR slope information within up to 1 h before IDH occurrence were used as time-series input data for the MP model. Among the MP models using the number and data length of different hidden layers, the model using 60 min of data before the occurrence of two layers and IDH showed maximum performance, with an accuracy of 81.5%, a true positive rate of 73.8%, and positive predictive value of 87.3%. This study aimed to predict IDH in real-time by continuously supplying HR information to MP models along with static data such as age, diabetes, hypertension, and ultrafiltration. The current MP model was implemented using relatively limited parameters; however, its performance may be further improved by adding additional parameters in the future, further enabling real-time IDH prediction to play a supporting role for medical staff.

Funder

Electronics and Telecommunications Research Institute

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3