Improving the Accuracy of Continuous Blood Glucose Measurement Using Personalized Calibration and Machine Learning

Author:

Kumari Ranjita1ORCID,Anand Pradeep Kumar2ORCID,Shin Jitae1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Sungkyunkwan University, Gyeonggi, Suwon 16419, Republic of Korea

2. Clinical Research Group, Samsung Healthcare, Gangdong-gu, Seoul 05340, Republic of Korea

Abstract

Despite tremendous developments in continuous blood glucose measurement (CBGM) sensors, they are still not accurate for all patients with diabetes. As glucose concentration in the blood is <1% of the total blood volume, it is challenging to accurately measure glucose levels in the interstitial fluid using CBGM sensors due to within-patient and between-patient variations. To address this issue, we developed a novel data-driven approach to accurately predict CBGM values using personalized calibration and machine learning. First, we scientifically divided measured blood glucose into smaller groups, namely, hypoglycemia (<80 mg/dL), nondiabetic (81–115 mg/dL), prediabetes (116–150 mg/dL), diabetes (151–181 mg/dL), severe diabetes (181–250 mg/dL), and critical diabetes (>250 mg/dL). Second, we separately trained each group using different machine learning models based on patients’ personalized parameters, such as physical activity, posture, heart rate, breath rate, skin temperature, and food intake. Lastly, we used multilayer perceptron (MLP) for the D1NAMO dataset (training to test ratio: 70:30) and grid search for hyperparameter optimization to predict accurate blood glucose concentrations. We successfully applied our proposed approach in nine patients with type 1 diabetes and observed that the mean absolute relative difference (MARD) decreased from 17.8% to 8.3%.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference34 articles.

1. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045;Sun;Diabetes Res. Clin. Pract.,2022

2. International Diabetes Federation (IDF) (2022, September 20). IDF Diabetes Atlas. Available online: https://diabetesatlas.org/atlas/tenth-edition/.

3. American Diabetes Association (2005). Diagnosis and classification of diabetes mellitus. Diabetes Care, 28, S37.

4. (2021, June 07). Global Diabetes Diagnostics Market to Reach $41.9 Billion by 2027. Statistic. Available online: https://www.strategyr.com/market-report-diabetes-diagnostics-forecasts-global-industry-analysts-inc.

5. Trends in nanomaterial-based noninvasive diabetes sensing technologies;Makaram;Diagnostics,2014

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3