Abstract
Tea plants can accumulate aluminum (Al) in their leaves to a greater extent than most other edible plants. Few studies, however, address the Al concentration in leaves at different positions, which is important information for tea quality control. Leaves from four different cultivars of Camellia sinensis L. grown in Hawaii were analyzed for Al concentrations at 10 different leaf positions. Each cultivar was harvested in the winter and summer to determine seasonal variations of Al concentrations in the leaves. The results showed that Al concentrations in the winter leaves were an average of 1.2-fold higher than those in the summer leaves, although the seasonal variations were not statistically significant. The total Al concentration of successively lower leaves showed an exponential increase (R2 ≥ 0.900) for all four cultivars in the summer season, whereas those of the winter leaves fit a bi-phase linear regression (R2 ≥ 0.968). The regression of the Al concentrations against the top-5 leaf positions in the winter season fit one linear regression, while that against leaf positions 6–11 fit another linear regression. The average Al concentrations between the third leaf and the shoot plus first two leaves increased approximately 2.7-fold and 1.9-fold for all cultivars in the winter and summer months, respectively. The Al concentrations in the rest of the leaves increased approximately 1.5-fold in a sequential order. The target hazard quotient being between 1.69 × 10−2 and 5.06 × 10−1 in the tea leaf samples of the four cultivars in Hawaii were all less than 1, suggesting negligible health risks for consumers. The results of this study may be useful for directing harvest practices and estimating tea quality.
Funder
National Natural Science Foundation of China
USDA HATCH funds
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Reference31 articles.
1. World Tea Production and Trade: Current and Future Development;Chang,2015
2. Green tea: Potential health benefits;Schneider;Am. Fam. Physician,2009
3. Food and Agriculture Organization of the United Nations: Crops and Livestock Products
https://www.fao.org/faostat/en/#data/TCL
4. Aluminium is essential for root growth and development of tea plants (
Camellia sinensis
)
5. Summary and Conclusions of the Sixty-Seventh Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA),2006
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献