A Flexible Approach for Assessing Heterogeneity of Causal Treatment Effects on Patient Survival Using Large Datasets with Clustered Observations

Author:

Hu LiangyuanORCID,Ji JiayiORCID,Liu Hao,Ennis Ronald

Abstract

Personalized medicine requires an understanding of treatment effect heterogeneity. Evolving toward causal evidence for scenarios not studied in randomized trials necessitates a methodology using real-world evidence. Herein, we demonstrate a methodology that generates causal effects, assesses the heterogeneity of the effects and adjusts for the clustered nature of the data. This study uses a state-of-the-art machine learning survival model, riAFT-BART, to draw causal inferences about individual survival treatment effects, while accounting for the variability in institutional effects; further, it proposes a data-driven approach to agnostically (as opposed to a priori hypotheses) ascertain which subgroups exhibit an enhanced treatment effect from which intervention, relative to global evidence—average treatment effects measured at the population level. Comprehensive simulations show the advantages of the proposed method in terms of bias, efficiency and precision in estimating heterogeneous causal effects. The empirically validated method was then used to analyze the National Cancer Database.

Funder

National Institute of Health

Patient-Centered Outcomes Research Institute

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3