Variable selection with missing data in both covariates and outcomes: Imputation and machine learning

Author:

Hu Liangyuan1ORCID,Joyce Lin Jung-Yi2,Ji Jiayi2

Affiliation:

1. Department of Biostatistics and Epidemiology, Rutgers University School of Public Health, USA

2. Department of Population Health Science & Policy, Icahn School of Medicine at Mount Sinai, USA

Abstract

Variable selection in the presence of both missing covariates and outcomes is an important statistical research topic. Parametric regression are susceptible to misspecification, and as a result are sub-optimal for variable selection. Flexible machine learning methods mitigate the reliance on the parametric assumptions, but do not provide as naturally defined variable importance measure as the covariate effect native to parametric models. We investigate a general variable selection approach when both the covariates and outcomes can be missing at random and have general missing data patterns. This approach exploits the flexibility of machine learning models and bootstrap imputation, which is amenable to nonparametric methods in which the covariate effects are not directly available. We conduct expansive simulations investigating the practical operating characteristics of the proposed variable selection approach, when combined with four tree-based machine learning methods, extreme gradient boosting, random forests, Bayesian additive regression trees, and conditional random forests, and two commonly used parametric methods, lasso and backward stepwise selection. Numeric results suggest that, extreme gradient boosting and Bayesian additive regression trees have the overall best variable selection performance with respect to the [Formula: see text] score and Type I error, while the lasso and backward stepwise selection have subpar performance across various settings. There is no significant difference in the variable selection performance due to imputation methods. We further demonstrate the methods via a case study of risk factors for 3-year incidence of metabolic syndrome with data from the Study of Women’s Health Across the Nation.

Funder

National Cancer Institute

Patient-Centered Outcomes Research Institute

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3